Subscribe:

Pages

Showing posts with label ELECTRONICS SEMINAR TOPICS. Show all posts
Showing posts with label ELECTRONICS SEMINAR TOPICS. Show all posts

Wednesday, January 12, 2011

Fractal image compression:Recent technique based on the representation of an image

Storing an image on a computer requires a very large memory. This problem can be averted by the use of various image compression techniques. Most images contain some amount of redundancy that can be removed when the image is stored and then replaced when it is reconstructed.

Fractal image compression is a recent technique based on the representation of an image. The self-transformability property of an image is assumed and exploited in fractal coding. It provides high compression ratios and fast decoding. Apart from this it is also simple and is an easily executable technique.

PERCEPTIVE COMPUTING:A computer with perceptual capabilities

Survival of animal depends highly on developed sensory abilities. Like wise human recognition depends on highly developed abilities to perceive, integrate, and interpret visual, auditory, and touch information. Also we have no doubt that if computers had even a small fraction of the perceptual ability of animals or humans, then they would be much more powerfull.Adding such perceptual abilities to computers would enable computers and humans to work together more as partners. Perceptive Computing (Blue Eyes) project aims at creating computational devices with the sort of perceptual abilities that people take for granted. Blue Eyes uses non-obtrusive sensing technology

Computer Clothing:Digital clothes that able to perform some of the PC functions

There is a major movement going on in the electronics and computer industries to develop wearable devices for what’s being called Post-PC era. We are now at the dawn of that era and some of these devices are already making their way to the consumer market .Computerized clothes will be the next step in making computers and devices portable without having to strap electronics into our body. These digital clothes will able to perform some of the PC functions. These devices are small in size and portable. This apparel can be used to read our heart rate and breathing. The LED monitors could even be integrated into this apparel to display text and images.

Wavelet Transforms:one of the important signal processing developments in the last decade

Wavelet transforms have been one of the important signal processing developments in the last decade, especially for the applications such as time-frequency analysis, data compression, segmentation and vision. During the past decade, several efficient implementations of wavelet transforms have been derived. The theory of wavelets has roots in quantum mechanics and the theory of functions though a unifying framework is a recent occurrence. Wavelet analysis is performed using a prototype function called a wavelet. Wavelets are functions defined over a finite interval and having an average value of zero. The basic idea of the wavelet transform is to represent any arbitrary function f (t) as a superposition of a set of such wavelets or basis functions. These basis functions or baby wavelets are obtained from a single prototype wavelet called the mother wavelet, by dilations or contractions (scaling) and translations (shifts). Efficient implementation of the wavelet transforms has been derived based on the Fast Fourier transform and short-length ‘fast-running FIR algorithms’ in order to reduce the computational complexity per computed coefficient.

Energy transmission system for an artificial heart- leakage inductance compensation

A power supply system using a transcutaneous transformer to power an artificial heart through intact skin has been designed. In order to realize both high-voltage gain and minimum circulating current, compensation of leakage inductances on both sides of a transcutaneous transformer is proposed. A frequency region which realizes the robustness against coupling coefficient and load variation is identified. In this region, the converter has inherent advantages such as zerovoltage switching (ZVS) or zero-current switching (ZCS) of the switches, high-voltage gain, minimum circulating current, and high efficiency.

Artificial heart, energy transmission system, high efficiency, high-frequency converter, high-power density, high-voltage gain, inductance compensation, soft-switched converter, transcutaneous transformer, zero-current switching (ZCS), zero-voltage switching (ZVS).

Wednesday, November 10, 2010

BiCMOS silicon technology:Electronics Seminar

The need for high-performance, low-power, and low-cost systems for network transport and wireless communications is driving silicon technology toward higher speed, higher integration, and more functionality. Further more, this integration of RF and analog mixed-signal circuits into high-performance digital signal-processing (DSP) systems must be done with minimum cost overhead to be commercially viable. While some analog and RF designs have been attempted in mainstream digital-only complimentary metal-oxide semiconductor (CMOS) technologies, almost all designs that require stringent RF performance use bipolar or semiconductor technology. Silicon integrated circuit (IC) products that, at present, require modern bipolar or BiCMOS silicon technology in wired application space include the essential optical network (SONET) and synchronous digital hierarchy (SDH) operating at 10 Gb/s and higher.

The viability of a mixed digital/analog. RF chip depends on the cost of making the silicon with the required elements; in practice, it must approximate the cost of the CMOS wafer, Cycle times for processing the wafer should not significantly exceed cycle times for a digital CMOS wafer. Yields of the SOC chip must be similar to those of a multi-chip implementation. Much of this article will examine process techniques that achieve the objectives of low cost, rapid cycle time, and solid yield.

Molecular Electronics:A new technology competitive to semiconductor technology

Semiconductor integration beyond Ultra Large Scale Integration (ULSI), through conventional electronic technology facing some problems with fundamental physical limitations. Beyond ULSI, a new technology may become competitive to semiconductor technology. This new technology is known is as Molecular Electronics.

Molecular based electronics can overcome the fundamental physical and economic issues limiting Si technology. Here, molecules will be used in place of semiconductor, creating electronic circuit small that their size will be measured in atoms. By using molecular scale technology, we can realize molecular AND gates, OR gates, XOR gates etc.

The dramatic reduction in size, and the sheer enormity of numbers in manufacture, are the principle benefits promised by the field of molecular electronics

Monday, September 20, 2010

Cryptography is the art of devising codes and ciphers

Cryptography is the art of devising codes and ciphers, and cryptoanalysis is the art of breaking them. Cryptology is the combination of the two. In the literature of cryptology, information to be encrypted is known as plaintext, and the parameters of the encryption function that transforms are collectively called a key.
Cryptology took on many forms in the centuries between the fall of Rome and the dawn of the Industrial Age. By the late 19th century, with the advent of the telegraph and wireless radio, cryptology took its permanent place as an important component of commercial, military and diplomatic communications. Rudimentary mechanical and electromechanical encoding inventions developed at the turn of the 20th century and through World War I laid the foundation for stronger and more efficient cipher devices.
With the dawn of the computer age, the possibilities for encryption methods and devices expanded exponentially. Machines with blazing fast computing power gave cryptographers the ability for the first time to design complicated encryption techniques.
The next great evolution in cryptology came with the introduction of microprocessor-powered computers. The rapid deployment of increasingly powerful desktops quickened the pace of cryptographic development, since even a moderately skilled computer user could break many of the algorithms in use.
Cryptology is more deeply rooted in every part of our communication and computing world than when it was first employed by ancient peoples. We use it to protect everything from e-mail to e-commerce transactions to personal diaries. As our dependency upon technology increases, so too will our dependency upon cryptography. After all, we all have things we want to keep secret.

Friday, July 30, 2010

Numerical modeling of active plasmonic nanoparticles

Enhanced scattering and light localization beyond the diffraction limit due to plasmon resonance in metallic nanoparticles is a well known phenomena and has been applied for a wide range of useful applications including nanoparticle waveguides, bio-sensors and several others. Based on the classical Mie theory it can be shown that by enclosing an active media in a nanoparticle, metallic losses can be overcome and a nanoparticle can be made to radiate by itself. This result can extend the use of plasmonic nanoparticles far beyond the current limitations and pave the way for lossless plasmonic waveguides, energy storage devices and nanolasers. This research aims to investigate, in theory and using numerical techniques, how these applications can be realized.

Ph.D. Seminar topic Analytical and Numerical Modeling of Subwavelength Plasmonic-waveguide Components for Nanophotonic Applications

Recently, in optics there has been a surge of interest in miniaturized metallic structures
that allow sub-wavelength control of electromagnetic energy in the infrared and visible
bands of the spectrum. This results an emerging field of science known as plasmonics,
which has plethora of applications such as nanoscale optical interconnects,
chemical/bio-sensors, high-resolution microscopy, etc.
This research aims to investigate various plasmonic waveguide-based optical
components in terms of equivalent transmission-line networks. This representation
allows one to use classical network analysis tools in microwave engineering to obtain
analytical expressions that describe the transmission response of useful devices in
nanophotonics. The derived formulae provide rapid design optimization paths unlike the
computationally expensive and time consuming numerical simulations.

Seminar on Photonic Band Gap Materials: Light Trapping Crystals

Photonic Band Gap (PBG) materials are artificial, periodic, dielectrics that enable engineering of the most fundamental properties of electromagnetic waves. These include the laws of refraction, diffraction, and spontaneous emission of light. Unlike traditional semiconductors that rely on the propagation of electrons through an atomic lattice, PBG materials execute their novel functions through selective trapping or localization of light. This is a fundamentally new and largely unexplored property of Maxwell's equations. This is also of practical importance for alloptical communications, information processing, efficient lighting, and solar energy trapping. Three dimensional (3D) PBG materials offer a unique opportunity to simultaneously (i) synthesize micron-scale 3D circuits of light that do not suffer from diffractive losses and (ii) engineer the electromagnetic vacuum density of states in this 3D optical micro-chip. This combined capability opens a new frontier in integrated optics as well as the basic science of radiation-matter interactions. I review recent approaches to micro-fabrication of photonic crystals with a large 3D PBG centered near 1.5 microns. These include direct laser-writing techniques, holographic lithography, and a newly invented optical phase mask lithography technique. I discuss consequences of PBG materials in classical and quantum electrodynamics.

Power transformers

Power transformers are the most significant pieces of equipment for electrical power delivery systems. One of the key parameters to be monitored in a power transformer is the internal temperature. High temperature accelerates the aging of winding paper insulation and increases the risk of bubbling under severe load conditions. Temperature is also an important parameter for transformer cooling system. The transformer winding hottest-spot temperature is one of a number of limiting factors for the loading capability of transformers. One way to increase the loading capability is to increase the efficiency of the cooling system by using fans and pumps. This research focuses on the investigation of the effect of the cooling system parameters, in particular the oil flow rate, on the thermal performance of power transformers.

Seminar on Optical Isolator: Application to Photonic Integrated Circuits

Optical active devices fail to operate in a desired manner, when unwanted reflections are launched into them. An optical isolator plays an essential role in protecting optical devices from unwanted reflections. Commercially available optical isolators based on a magneto-optic Faraday effect, which are provided with optical fiber and optical beam interfaces, are hard to be integrated with other optical devices. In case of waveguide isolators, it is quite unrealizable to use a rotation of polarization, because the precise control of waveguide birefringence is needed. Several approaches have been developed to avoid the precise control of waveguide geometry, like a nonreciprocal radiation and a nonreciprocal loss isolator. An interferometric waveguide isolator, which uses a nonreciprocal phase shift provided by the first-order magneto-optic effect, has the advantages of a single polarization operation and a wide operational wavelength range. Also, the interferometric isolator is realizable in several waveguide platforms by using a magneto-optic material in a cladding layer. To achieve this, we developed a direct bonding technique of magneto-optic garnet on III-V compound semiconductors and silicon waveguides. In this talk, the integration of optical isolators will be addressed, which includes a non-magneto-optic approach. 

reference :http://www.eng.monash.edu.au

Advanced Optical Functionalities in Photonic Crystals

High-quality self-assembled three-dimensionally-ordered photonic crystals have been synthesized with inorganic and polymeric colloids. These crystals display a pseudo bandgap in the UV / visible / near-IR regions with high values of reflectance combined with low transmission. The stop band characteristics have been modified after infiltrating these passive photonic crystals with materials such as ZnO as well as by synthesizing active photonic crystals directly from colloids made of organic dye-polymer composites. The emission characteristics of these active species are modified by the photonic crystal    environment due to the anisotropic stop band. It has been possible to fabricate photonic crystal heterostructures as well as photonic crystal waveguides for building functionalities into photonic integrated circuits.  BJ93GJCCMXAR

2010 seminar topic Multi-wavelength and Broadband Optical Sources for Fiber-Optic Communication

Tunable lasers in the C and L bands of fiber-optic communication have been designed with erbium-doped fiber. Tunability has been achieved without using an intra-cavity filter, merely by changing the intro-cavity parameters in an appropriate manner. Also, mode-locking at GHz frequencies with a very simple economical design is a highlight of this work. The large tuning range possible in this design is further utilized in demonstrating a broadband source by introducing a dispersion shifted fiber as an intra cavity element. The multiple four-wave mixing processes occurring between the longitudinal modes in this fiber result in a spectral broadening throughout the gain spectrum of the EDF. This is a simple and elegant design to realize a tunable broadband source at pump powers less than 200 mW. The mechanism of broadband generation and the utility of the source for applications will be discussed.

Monday, June 28, 2010

Sunday, September 27, 2009

High temperature superconductivity

SUPERCONDUCTIVITY is the ability of certain materials to conduct electric current with no resistance and extremely low losses. This ability to carry large amounts of currents can be applied to electric power devices such as motors and generators and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the electricity ordinary copper or aluminium wires of same size.

Scientists had been intrigued with the concept of superconductivity since its discovery in the early 1900’s, but the extreme low temperature the phenomenon required was a barrier to practical and low cost application. This all changed in 1986 when a new class of ceramic super conductors were discovered that ‘SUPERCONDUCTED’ at higher temperatures. The science of high temperature superconductivity (HTS) was born, and Along with it came the prospect for an elegant technology that promises to ‘supercharge’ the way energy is generated, delivered and used.

At the heart of high temperature superconductivity lies a promise for the near future. A promise for transmitting and using electricity with near perfect efficiency and much higher capacity, besides all this it also has a wide range of application like MRI scanning, maglev trains etc. This seminar shall discuss on the concepts of superconductivity, its classifications, its various properties and its applications.

‘We have completed the first electrical century ushered in by Thomas Edison . We are now entering a second electrical century, ushered in by High Temperature Superconductivity.’

E-paper

E-paper is a revolutionary material that can be used to make next generation electronic displays. It is portable reusable storage and display medium that look like paper but can be repeatedly written one thousands of times. These displays make the beginning of a new area for battery power information applications such as cell phones, pagers, watches and hand-held computers etc.

Two companies are carrying our pioneering works in the field of development of electronic ink and both have developed ingenious methods to produce electronic ink. One is E-ink, a company based at Cambridge, in U.S.A. The other company is Xerox doing research work at the Xerox’s palo Atto Research Centre. Both technologies being developed commercially for electronically configurable paper like displays rely on microscopic beads that change colour in response to the charges on nearby electrodes.

Like traditional paper, E-paper must be lightweight, flexible, glare free and low cost. Research found that in just few years this technology could replace paper in many situations and leading us ink a truly paperless world.

Dense Wavelength Division Multiplexing (DWDM)

Dense Wavelength Division Multiplexing (DWDM) is a fiber-optic transmission technique. It involves the process of multiplexing many different wavelength signals onto a single fiber. So each fiber have a set of parallel optical channels each using slightly different light wavelengths. It employs light wavelengths to transmit data parallel-by-bit or serial-by-character. DWDM is a very crucial component of optical networks that will allow the transmission of data: voice, video-IP, ATM and SONET/SDH respectively, over the optical layer.



From both technical and economic perspectives, the ability to provide potentially unlimited transmission capacity is the most obvious advantage of DWDM technology. The current investment in fiber plant can not only be preserved, but also optimized by a factor of at least 32. As demands change, more capacity can be added, either by simple equipment upgrades or by increasing the number of lambda’s on the fiber, without expensive upgrades. Bandwidth aside, DWDM’s technical advantages are transparency, scalability and dynamic provisioning.

DIGITALWATERMARKING

The growth of high speed computer networks has explored means of new business, scientific, entertainment, and social opportunities. Digital media offer several distinct advantages over analog media, such as high quality, easy editing, high fidelity copying. The ease by which digital information can be duplicated and distributed has led to the need for effective copyright protection tools. Various software products have been recently introduced in attempt to address these growing concerns. It is done by hiding data within digital audio, images and video files. One way such data hiding is copyright label or digital watermark that completely characterizes the person who applies it and, therefore, marks it as being his intellectual property. Digital Watermarking is the process that embeds data called a watermark into a multimedia object such that watermark can be detected or extracted later to make an assertion about the object. Watermarking is either visible or invisible. Although visible and invisible are visual terms watermarking is not limited to images, it can also be used to protect other types of multimedia object.