Subscribe:

Pages

Showing posts with label MechanicalSeminar-A. Show all posts
Showing posts with label MechanicalSeminar-A. Show all posts

Sunday, October 24, 2010

ADAPTIVE CRUISE CONTROL

Mentally, driving is a highly demanding activity - a driver must maintain a high level of concentration for long periods and be ready to react within a split second to changing situations. In particular, drivers must constantly assess the distance and relative speed of vehicles in front and adjust their own speed accordingly.
Those tasks can now be performed by Adaptive Cruise Control (ACC) system, which is an extension of the conventional cruise control system.
Like a conventional cruise control system, ACC keeps the vehicle at a set constant speed. The significant difference, however, is that if a car with ACC is confronted with a slower moving vehicle ahead, it is automatically slowed down and then follows the slower vehicle at a set distance. Once the road ahead is clear again, the ACC accelerates the car back to the previous set cruising speed. In that way, ACC integrates a vehicle harmoniously into the traffic flow.

Abrasive water jet machine tools

Abrasive water jet machine tools are suddenly being a hit in the market since they are quick to program and could make money on short runs. They are quick to set up, and offer quick turn-around on the machine. They complement existing tools used for either primary or secondary operations and could make parts quickly out of virtually out of any material. One of the major advantage is that they do not heat the material. All sorts of intricate shapes are easy to make. They turns to be a money making machine.
So ultimately a machine shop without a water jet , is like a carpenter with out a hammer. Sure the carpenter can use the back of his crow bar to hammer in nails, but there is a better way. It is important to understand that abrasive jets are not the same thing as the water jet although they are nearly the same. Water Jet technology has been around since the early 1970s or so, and abrasive jets extended the concept about ten years later. Both technologies use the principle of pressuring water to extremely high pressure, and allowing the water to escape through opening typically called the orifice or jewel. Water jets use the beam of water exiting the orifice to cut soft stuffs like candy bars, but are not effective for cutting harder materials. The inlet water is typically pressurized between 20000 and 60000 Pounds Per Square Inch (PSI). This is forced through a tiny wall in the jewel which is typically .007” to .015” diameter (0.18 to0.4 mm) . This creates a vary high velocity beam of water. Abrasive jets use the same beam of water to accelerate abrasive particles to speeds fast enough to cut through much faster material

Aerospace Flywheel Development

Presently, energy storage on the Space Station and satellites is accomplished using chemical batteries; most commonly nickel hydrogen or nickel cadmium. A flywheel energy storage system is an alternative technology that is being considered for future space missions. Flywheels offer the advantage of a longer lifetime, higher efficiency and a greater depth of discharge than batteries. A flywheel energy storage system is being considered as a replacement for the traditional electrochemical battery system in spacecraft electrical power systems. The flywheel system is expected to improve both the depth of discharge and working life by a factor of 3 compared with its battery counterpart. Although flywheels have always been used in spacecraft navigation and guidance systems, their use for energy storage is new. However, the two functions can easily be combined into a single system. Several advanced technologies must be demonstrated for the flywheel energy storage system to be a viable option for future space missions. These include high strength composite materials, highly efficient high speed motor operation and control, and magnetic bearing levitation.