reference :http://www.eng.monash.edu.au
Showing posts with label O. Show all posts
Showing posts with label O. Show all posts
Friday, July 30, 2010
Seminar on Optical Isolator: Application to Photonic Integrated Circuits
reference :http://www.eng.monash.edu.au
Labels:
ELECTRONICS SEMINAR TOPICS,
O
Saturday, August 1, 2009
OpenRAN
Labels:
CS AND IT SEMINAR TOPICS,
O
OVONIC UNIFIED MEMORY
More details :
Sunday, July 12, 2009
OFDMA
OFDMA features
OFDMA is the 'multi-user' version of OFDM
Functions by partitioning the resources in the time-frequency space, by assigning units along the OFDM signal index and OFDM sub-carrier index
Each OFDMA user transmits symbols using sub-carriers that remain orthogonal to those of other users
More than one sub-carrier can be assigned to one user to support high rate applications
Allows simultaneous transmission from several users ⇒ better spectral efficiency
Multiuser interference is introduced if there is frequency synchronization error
The term 'OFDMA' is claimed to be a registered trademark by Runcom Technologies Ltd., with various other claimants to the underlying technologies through patents. It is used in the mobility mode of IEEE 802.16 WirelessMAN Air Interface standard, commonly referred to as WiMAX.
Labels:
ELECTRONICS SEMINAR TOPICS,
O
Friday, July 3, 2009
Organic LED
Organic LED
Scientific research in the area of semiconducting organic materials as the active substance in light emitting diodes (LEDs) has increased immensely during the last four decades. Organic semiconductors was first reported in the 60:s and then the materials where only considered to be merely a scientific curiosity. (They are named organic because they consist primarily of carbon, hydrogen and oxygen.). However when it was recognized in the eighties that many of them are photoconductive under visible light, industrial interests were attracted. Many major electronic companies, such as Philips and Pioneer, are today investing a considerable amount of money in the science of organic electronic and optoelectronic devices. The major reason for the big attention to these devices is that they possibly could be much more efficient than todays components when it comes to power consumption and produced light. Common light emitters today, Light Emitting Diodes (LEDs) and ordinary light bulbs consume more power than organic diodes do. And the strive to decrease power consumption is always something of matter. Other reasons for the industrial attention are i.e. that eventually organic full color displays will replace todays liquid crystal displays (LCDs) used in laptop computers and may even one day replace our ordinary CRT-screens. Organic light-emitting devices (OLEDs) operate on the principle of converting electrical energy into light, a phenomenon known as electroluminescence. They exploit the properties of certain organic materials which emit light when an electric current passes through them. In its simplest form, an OLED consists of a layer of this luminescent material sandwiched between two electrodes. When an electric current is passed between the electrodes, through the organic layer, light is emitted with a color that depends on the particular material used. In order to observe the light emitted by an OLED, at least one of the electrodes must be transparent. When OLEDs are used as pixels in flat panel displays they have some advantages over backlit active-matrix LCD displays - greater viewing angle, lighter weight, and quicker response. Since only the part of the display that is actually lit up consumes power, the most efficient OLEDs available today use less power. Based on these advantages, OLEDs have been proposed for a wide range of display applications including magnified microdisplays, wearable, head-mounted computers, digital cameras, personal digital assistants, smart pagers, virtual reality games, and mobile phones as well as medical, automotive, and other industrial applications.
More details :
Still need more information and ppt,doc mail me
Labels:
ELECTRONICS SEMINAR TOPICS,
O
Subscribe to:
Comments (Atom)


