Electric rocket engines use batteries, solar power, or some other energy source to accelerate and expel charged particles. These rocket engines have extremely high specific impulses, so they are very efficient, but they produce low thrusts. The thrusts that they produce are sufficient only to accelerate small objects, changing the object’s speed by a small amount in the vacuum of space. However, given enough time, these low thrusts can gradually accelerate objects to high speeds. This makes electric propulsion suitable only for travel in space. Because electric rockets are so efficient and produce small thrusts, however, they use very little fuel. Some electric rockets can provide thrust for years, making them ideal for deep-space missions. Satellites or other spacecraft that use electric rockets for propulsion must be first boosted into space by more powerful chemical rockets or launched from a spacecraft.
Monday, October 25, 2010
CHEMICAL ROCKET ENGINES
Electric rocket engines use batteries, solar power, or some other energy source to accelerate and expel charged particles. These rocket engines have extremely high specific impulses, so they are very efficient, but they produce low thrusts. The thrusts that they produce are sufficient only to accelerate small objects, changing the object’s speed by a small amount in the vacuum of space. However, given enough time, these low thrusts can gradually accelerate objects to high speeds. This makes electric propulsion suitable only for travel in space. Because electric rockets are so efficient and produce small thrusts, however, they use very little fuel. Some electric rockets can provide thrust for years, making them ideal for deep-space missions. Satellites or other spacecraft that use electric rockets for propulsion must be first boosted into space by more powerful chemical rockets or launched from a spacecraft.
Labels:
C,
Mechanical,
MechanicalSeminar-C
CARBON NANOTUBES
HISTORY
Discovered in 1991 by researchers at NEC, they have the potential for use as minuscule wires or in ultrasmall electronic devices.
To build those devices, scientists must be able to manipulate the Nanotubes in a controlled way.
DEVELOPMENT
IBM researchers using an atomic force microscope (AFM), an instrument whose tip can apply accurately measured forces to atoms and molecules, have recently devised a means of changing a nanotube's position, shape and orientation, as well as cutting it.
Labels:
C,
Mechanical,
MechanicalSeminar-C
Continuously variable transmission (CVT):A potential solution to this fuel economy dilemma
One potential solution to this fuel economy dilemma is the continuously variable transmission (CVT), an old idea that has only recently become a bastion of hope to automakers. CVTs could potentially allow IC vehicles to meet the first wave of new fuel regulations while development of hybrid electric and fuel cell vehicles continues. Rather than selecting one of four or five gears, a CVT constantly changes its gear ratio to optimize engine efficiency with a perfectly smooth torque-speed curve. This improves both gas mileage and acceleration compared to traditional transmissions.
The fundamental theory behind CVTs has undeniable potential, but lax fuel regulations and booming sales in recent years have given manufacturers a sense of complacency: if consumers are buying millions of cars with conventional transmissions, why spend billions to develop and manufacture CVTs?
Although CVTs have been used in automobiles for decades, limited torque capabilities and questionable reliability have inhibited their growth. Today, however, ongoing CVT research has led to ever-more robust transmissions, and thus ever-more-diverse automotive applications. As CVT development continues, manufacturing costs will be further reduced and performance will continue to increase, which will in turn increase the demand for further development. This cycle of improvement will ultimately give CVTs a solid foundation in the world’s automotive infrastructure.
Labels:
C,
Mechanical,
MechanicalSeminar-C
CRYOGENIC ENGINES :CRYOGENICS- BIRTH OF AN ERA
The field of cryogenics advanced when during world war two, when metals were frozen to low temperatures showed more wear resistance. In 1966, a company was formed, called CyroTech, which experimented with the possibility of using cryogenic tempering instead of Heat Treating, for increasing the life of metal tools. The theory was based on the existing theory of heat treating, which was lowering the temperatures to room temperatures from high temperatures and supposing that further descent would allow more strength for further strength increase. Unfortunately for the newly-born industry the results were unstable as the components sometimes experienced thermal shock when cooled too fast. Luckily with the use of applied research and the with the arrival of the modern computer this field has improved significantly, creating more stable results.
Another use of cryogenics is cryogenic fuels. Cryogenic fuels, mainly oxygen and nitrogen have been used as rocket fuels. The Indian Space Research Organisation (ISRO) is set to flight-test the indigenously developed cryogenic engine by early 2006, after the engine passed a 1000 second endurance test in 2003. It will form the final stage of the GSLV for putting it into orbit 36,000 km from earth.
It is also used for making highly sensitive sensors for detecting even the weakest signals reaching us from the stars. Most of these sensors must be cooled well below the room temperature to have the necessary sensitivity, for example, infrared sensors, x-ray spectrometers etc. The High resolution Airborne Widebandwidth Camera, for SOFIA (Stratospheric Observatory For Field Astronomy) which is a Boeing 747 flying observatory, a project of the University Of Chicago, Goddard Space Flight Center and the Rochester Institute Of Technology, which when enters into operation will be the largest infra-red telescope available, is cooled by an adiabatic demagnetization refrigerator operating at a temperature of 0.2K.
Another branch of cryogenics is cryonics, a field devoted to freeze people, which is used to freeze those who die of diseases, that they hope will be curable by the time scientists know how to revive people.
Labels:
C,
Mechanical,
MechanicalSeminar-C
COMMON SYNTHETIC PLASTICS
Plastic molecules are made of long chains of repeating units called monomers. The atoms that make up a plastic’s monomers and the arrangement of the monomers within the molecule both determine many of the plastic’s properties. Plastics are one of the classification of polymers .If a polymer is shaped into hard and tough utility articles by the application of heat and pressure ,it is used as “plastic”.
Synthetic polymers are often referred to as "plastics", such as the well-known polyethylene and nylon. However, most of them can be classified in at least three main categories: thermoplastics, thermosets and elastomers.
Man-made polymers are used in a bewildering array of applications: food packaging, films, fibers, tubing, pipes, etc. The personal care industry also uses polymers to aid in texture of products, binding etc.
Examples
A non-exhaustive list of these ubiquitous materials includes:
acrylonitrile butadiene styrene (ABS)
polyamide (PA)
polybutadiene
poly(butylene terephthalate) (PBT)
polycarbonate
poly(ether sulphone) (PES, PES/PEES)
polyethylene (PE)
poly(ethylene glycol) (PEG)
poly(ethylene terephthalate) (PET)
polyimide
polypropylene (PP )
polystyrene (PS)
styrene acrylonitrile (SAN)
polyurethane (PU)
polyvinylchloride (PVC)
Labels:
C,
Mechanical,
MechanicalSeminar-C
Sunday, October 24, 2010
CAMLESS ENGINE
A single overhead camshaft (SOHC) design uses one camshaft to move rockers that open both inlet and exhaust valves. The double overhead camshaft (DOHC), or twin-cam, setup does away with the rockers and devotes one camshaft to the inlet valves and the other to the exhaust valves
Labels:
C,
Mechanical,
MechanicalSeminar-C
ADAPTIVE CRUISE CONTROL
Those tasks can now be performed by Adaptive Cruise Control (ACC) system, which is an extension of the conventional cruise control system.
Like a conventional cruise control system, ACC keeps the vehicle at a set constant speed. The significant difference, however, is that if a car with ACC is confronted with a slower moving vehicle ahead, it is automatically slowed down and then follows the slower vehicle at a set distance. Once the road ahead is clear again, the ACC accelerates the car back to the previous set cruising speed. In that way, ACC integrates a vehicle harmoniously into the traffic flow.
Labels:
A,
Mechanical,
MechanicalSeminar-A
Subscribe to:
Comments (Atom)


