Subscribe:

Pages

Wednesday, January 12, 2011

microprocessor based auto synchronization

The manual method of synchronization demands a skilled operator and the method is suitable for no load operation or normal frequency condition. under emergency condition such as lowering of frequency or synchronizing of large machines a very fast action is needed, which may not be possible for a human operator. Thus there is a need of autosynchroniser in a power station or in an industrial establishment where generator are employed. This paper describes a microprocessor based set up for synchronizing a three phase alternator to a busbar. Also existing methods of synchronization are mentioned.

Wavelet Transforms:one of the important signal processing developments in the last decade

Wavelet transforms have been one of the important signal processing developments in the last decade, especially for the applications such as time-frequency analysis, data compression, segmentation and vision. During the past decade, several efficient implementations of wavelet transforms have been derived. The theory of wavelets has roots in quantum mechanics and the theory of functions though a unifying framework is a recent occurrence. Wavelet analysis is performed using a prototype function called a wavelet. Wavelets are functions defined over a finite interval and having an average value of zero. The basic idea of the wavelet transform is to represent any arbitrary function f (t) as a superposition of a set of such wavelets or basis functions. These basis functions or baby wavelets are obtained from a single prototype wavelet called the mother wavelet, by dilations or contractions (scaling) and translations (shifts). Efficient implementation of the wavelet transforms has been derived based on the Fast Fourier transform and short-length ‘fast-running FIR algorithms’ in order to reduce the computational complexity per computed coefficient.

Energy transmission system for an artificial heart- leakage inductance compensation

A power supply system using a transcutaneous transformer to power an artificial heart through intact skin has been designed. In order to realize both high-voltage gain and minimum circulating current, compensation of leakage inductances on both sides of a transcutaneous transformer is proposed. A frequency region which realizes the robustness against coupling coefficient and load variation is identified. In this region, the converter has inherent advantages such as zerovoltage switching (ZVS) or zero-current switching (ZCS) of the switches, high-voltage gain, minimum circulating current, and high efficiency.

Artificial heart, energy transmission system, high efficiency, high-frequency converter, high-power density, high-voltage gain, inductance compensation, soft-switched converter, transcutaneous transformer, zero-current switching (ZCS), zero-voltage switching (ZVS).

Wednesday, November 10, 2010

Integrated Gate Commutated Thyristor (IGCT)

The Integrated Gate Commutated Thyristor (IGCT) combines the advantages of the hard driven GTO thyristor, including its dramatically improved turn- off performance, with technological breakthroughs at the device, gate-drive and application levels. Homogenous switching area of the IGCT up to the dynamic avalanche limits. Snubber circuits are no longer needed. Improved loss characteristics allow high frequency applications extending into the kHz range. A new IGCT device family with integrated high- power diodes has been developed for applications in the 0.5-6 MVA range, extending to several 100 MVA with series and parallel connections. A first 100 MVA inverter based on the IGCT has been in commercial operation and confirms the very high level of reliability of this new technology. Other new application using the IGCT platform includes ABB’s new ACS1000 drive for medium voltage applications.

BiCMOS silicon technology:Electronics Seminar

The need for high-performance, low-power, and low-cost systems for network transport and wireless communications is driving silicon technology toward higher speed, higher integration, and more functionality. Further more, this integration of RF and analog mixed-signal circuits into high-performance digital signal-processing (DSP) systems must be done with minimum cost overhead to be commercially viable. While some analog and RF designs have been attempted in mainstream digital-only complimentary metal-oxide semiconductor (CMOS) technologies, almost all designs that require stringent RF performance use bipolar or semiconductor technology. Silicon integrated circuit (IC) products that, at present, require modern bipolar or BiCMOS silicon technology in wired application space include the essential optical network (SONET) and synchronous digital hierarchy (SDH) operating at 10 Gb/s and higher.

The viability of a mixed digital/analog. RF chip depends on the cost of making the silicon with the required elements; in practice, it must approximate the cost of the CMOS wafer, Cycle times for processing the wafer should not significantly exceed cycle times for a digital CMOS wafer. Yields of the SOC chip must be similar to those of a multi-chip implementation. Much of this article will examine process techniques that achieve the objectives of low cost, rapid cycle time, and solid yield.

Adaptive Piezoelectric energy harvesting circuit

This paper describes an approach to harvesting electrical energy from a mechanically excited piezoelectric element. A vibrating piezoelectric device differs from a typical electrical power source in that it has a capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. An analytical expression for the optimal power flow from a rectified piezoelectric device is derived, and an “energy harvesting “ circuit is proposed which can achieve this optimal power flow. The harvesting circuit consists of an ac-dc rectifier with an output capacitor, an electrochemical battery, and a switch-mode dc-dc converter that controls the energy flow into the battery. An adaptive control technique for the dc-dc converter is used to continuously implement the optimal power transfer theory and maximize the power stored by the battery. Experimental result reveal that the use of the adaptive dc-dc converter increases power transfer by over 400% as compared to when the dc-dc converter is not used.

Coordinated secondary voltage control to eliminate voltage violation in power system contingencies

In order to achieve more efficient voltage regulation in a power system, coordinated secondary voltage control has been proposed, bringing in the extra benefit of enhancement of power system voltage stability margin. The study is presented by the e.g. with two SVCs and two STATCOMs in order to eliminate voltage violation in systems contingencies. In the paper, it is proposed that the secondary voltage control is implemented by a learning fuzzy logic controller. A key parameter of the controller is trained by P-type learning algorithm via offline simulation with the assistance of injection of artificial loads in controller’s adjacent locations. A multiagent collaboration protocol, which is graphically represented as a finite state machine, is proposed in the paper for the coordination among multiple SVCs and STATCOMs. As an agent, each SVC or STATCOM can provide multilocation coverage to eliminate voltage violation at its adjacent nodes in the power system. Agents can provide collaborative support to each other which is coordinated according to the proposed collaboration protocol.