Wednesday, November 10, 2010
Integrated Gate Commutated Thyristor (IGCT)
Labels:
Electrical Seminar Topics,
I
BiCMOS silicon technology:Electronics Seminar
The viability of a mixed digital/analog. RF chip depends on the cost of making the silicon with the required elements; in practice, it must approximate the cost of the CMOS wafer, Cycle times for processing the wafer should not significantly exceed cycle times for a digital CMOS wafer. Yields of the SOC chip must be similar to those of a multi-chip implementation. Much of this article will examine process techniques that achieve the objectives of low cost, rapid cycle time, and solid yield.
Adaptive Piezoelectric energy harvesting circuit
Labels:
A,
Electrical Seminar Topics,
ElectricalSeminar-A
Coordinated secondary voltage control to eliminate voltage violation in power system contingencies
Labels:
C,
Electrical Seminar Topics,
ElectricalSeminar-C
Molecular Electronics:A new technology competitive to semiconductor technology
Molecular based electronics can overcome the fundamental physical and economic issues limiting Si technology. Here, molecules will be used in place of semiconductor, creating electronic circuit small that their size will be measured in atoms. By using molecular scale technology, we can realize molecular AND gates, OR gates, XOR gates etc.
The dramatic reduction in size, and the sheer enormity of numbers in manufacture, are the principle benefits promised by the field of molecular electronics
Tele-Immersion (TI) :Free full Engineering seminar reort
Tele-immersion can be of immense use in medical industry and it also finds its application in the field of education
Labels:
Electrical Seminar Topics,
T
Tuesday, October 26, 2010
Cylinder Deactivation: A fast emerging technology to save fuel
The simple fact is that when you only need small amounts of power such as crawling around town what you really need is a smaller engine. To put it another way an engine performs most efficiently when its working harder so ask it to do the work of an engine half its size and efficiency suffers. Pumping or throttling losses are mostly to blame. Cylinder deactivation is one of the technologies that improve fuel economy, the objective of which is to reduce engine pumping losses under certain vehicle operating conditions.
When a petrol engine is working with the throttle wide open pumping losses are minimal. But at part throttle the engine wastes energy trying to breathe through a restricted airway and the bigger engine, the bigger the problem. Deactivating half the cylinders at part load is much like temporarily fitting a smaller engine.
During World War II, enterprising car owners disconnected a spark plug wire or two in hopes of stretching their precious gasoline ration. Unfortunately, it didn’t improve gas mileage. Nevertheless, Cadillac resurrected the concept out of desperation during the second energy crisis. The “modulated displacement 6.0L V-8- 6-4” introduced in 1981 disabled two, then four cylinders during part-throttle operation to improve the gas mileage of every model in Cadillac’s lineup. A digital dash display reported not only range, average mpg, and instantaneous mpg, but also how many cylinders were operating. Customers enjoyed the mileage boost but not the
side effects. Many of them ordered dealers to cure their Cadillacs of the shakes and stumbles even if that meant disconnecting the modulated-displacement system
Like wide ties, short skirts and $2-per-gallon gas, snoozing cylinders are back. General Motors, the first to show renewed interest in the idea, calls it Displacement on Demand (DoD). DaimlerChrysler, the first manufacturer to hit the U.S. market with a modern cylinder shut-down system calls its approach Multi- Displacement System (MDS). And Honda, who beat everyone to the punch by equipping Japanese-market Inspire models with cylinder deactivation last year, calls the approach Variable Cylinder Management (VCM)
The motivation is the same as before — improved gas mileage. Disabling cylinders finally makes sense because of the strides achieved in electronic power train controls. According to GM, computing power has been increased 50-fold in the past two decades and the memory available for control algorithms is 100 times greater. This time around, manufacturers expect to disable unnecessary cylinders so seamlessly that the driver never knows what’s happening under the hood.
Labels:
C,
Mechanical,
MechanicalSeminar-C
Subscribe to:
Comments (Atom)


